Selective Catalytic Reduction of NO_x in Lean Burn Engine Exhaust by Highly Active Pt Supported on V-impregnated MCM-41

Jong Yeol Jeon, Hee Young Kim, and Seong Ihl Woo**

Division of Advanced Chemical Technology, Korea Reasearch Institute of Chemical Technology,

P.O. Box 107, Yusong, Taejon 305-600, Korea

[†]Department of Chemical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Kusong-dong, Yusong-gu, Taejon, 305-701, Korea

(Received October 25, 2001; CL-011048)

On the Pt/V/MCM-41 catalyst with 1 wt% Pt and 4 wt% V, the maximum conversion of NO reduction into $N_2 + N_2O$ by C_3H_6 was about 73%, which was 10% higher than on 1 wt% Pt/ silica, and this maximum conversion was maintained over a temperature range of 70 °C between 270 and 340 °C.

Nitrogen oxides (NO_X) present in lean-burn and diesel engine exhaust containing excess O_2 have yet to be effectively converted to innoxious N_2 . For the selective reduction of this lean NO_X by hydrocarbon, supported Pt is considered to be a promising catalyst because it is active at low temperature and is both (hydro)thermally stable and resistant to SO_2 .^{1,2} It is, however, only active over a narrow temperature range and a large part of the NO_X reacted on it goes to N_2O , a gas which contributes to the greenhouse effect and causes ozone layer destruction.³ Pt therefore requires a new support material or a promoter to overcome the shortcomings.

We investigated various metal-substituted MCM-41 molecular sieves (V-, Ti-, Fe-, Al-, Ga-, La-, Co-, Mo-, Ce- and Zr-MCM-41) and vanadium oxide-impregnated MCM-41 to assess their potential as new support materials for Pt in the reduction of NO with C_3H_6 . These metals have all been reported to be able to be incorporated into the silicate framework of MCM-41.⁴⁻⁶ For comparative purpose, alumina (Strem Chem., 185 m²·g⁻¹) and silica (Davison 952, 310 m²·g⁻¹) were also tested as a Pt support.

Figure 1 shows the activity test results for the catalysts in which 1 wt% Pt was impregnated on these metal oxides using platinum acetylacetonate dissolved in toluene. 0.1 g of the catalyst was loaded in a quartz tubular reactor, and tested under the 140 cm³·min⁻¹ (42000 GHSV) of total gas flow consisting of 2000 ppm NO, 2700 ppm C₃H₆, 3% O₂ in He. Metal-substituted MCM-41 (Si/metal = 50 on the basis of metal precursors) and pure MCM-41 were synthesized by a similar method to that of Grubert et al.⁴ Vanadium oxide-impregnated MCM-41 (V/MCM-41) was prepared by impregnating MCM-41 in a toluene solution of vanadium acetylacetonate, followed by calcining at 550 °C after drying.

Of the investigated catalysts, Pt supported on V/MCM-41 (Pt/V/MCM-41) having 1 wt% Pt and 4 wt% V showed the best activity for the reduction of NO by C_3H_6 . The peak conversion of NO into $N_2 + N_2O(C_N)$ was about 73%, a 10% higher value than that on Pt supported on silica, which has been known to be the best Pt support for the reduction of NO by C_3H_6 .⁷ Moreover, the peak C_N of Pt/V/MCM-41 was maintained over a temperature range of 70 °C from 270 to 340 °C, dissimilarly to a general trend on Pt-based catalysts wherein the peak C_N decreases sharply after

Figure 1. Conversion of NO into $N_2 + N_2O$ on Pt supported on (a) V/MCM-41 (\bigcirc), V-MCM-41 (\triangle), silica (\square), alumina (\bigcirc); (b) Ce-MCM-41 (\bigcirc), Mo-MCM-41 (\triangle), Ti-MCM-41 (\square), Zr-MCM-41 (\bigcirc); (C) Al-MCM-41 (\bigcirc), Fe-MCM-41 (\triangle), Ga-MCM-41 (\bigtriangledown), La-MCM-41 (\bigcirc), Co-MCM-41 (\diamondsuit); (a) (b) (c) MCM-41 (\blacksquare).

attainment. In the case of Pt/silica and alumina we can see this trend in Figure 1(a).

In tests under the presence of water or SO₂, it was ascertained that the activity of Pt/V/MCM-41 was not significantly reduced. Vanadium oxide is a main catalytic component used for the reduction of NO_X from a stationary source by NH₃. V as well as Pt have been well known to be resistant to SO₂.⁸ Pt/V/MCM-41 consisted of Pt and oxides of V and Si was not deactivated greatly under the 500 ppm of SO₂. Figure 2 shows the effect of water on C_N. At 250 °C, at which C₃H₆ was not yet depleted by the reaction, C_N increased with increasing amounts of water, and then decreased gradually at water concentrations above 3.7%. Although C_N decreased at high water concentration, even at 8%

Copyright © 2002 The Chemical Society of Japan

Figure 2. Effect of water on the conversion of NO into $N_2 + N_2O$ on Pt/V/MCM-41 at 250 (\blacksquare) and 350 °C (\boxdot).

water the activity of the Pt/V/MCM-41 catalyst was higher than at 0% water. On the other hand, at 350 °C, at which C_3H_6 was completely depleted, the activity of Pt/V/MCM-41 decreased with the concentration of water, but only slightly; C_3H_6 was consumed 100% at temperature where the C_N reach its maximum in all the catalytic reductions of NO investigated and CO₂ was the only gaseous product from C_3H_6 .

Meanwhile, Pt supported on pure MCM-41 (Pt/MCM-41) showed slightly better activity than Pt/silica, as has been reported by Schießer et al.⁹ When metal (V, Ti, Fe, Al, Ga, La, Co, Mo, Ce and Zr) was substituted into this MCM-41 framework and Pt was impregnated on it (Pt/metal-MCM-41), the catalytic activity decreased, rather than increased, by the incorporation of the metal except for V, although the Ce- and Mo-substituted relaysts had somewhat higher activity than the unsubstituted Pt/MCM-41 in the limited region between 320 and 420 °C. Of the investigated metals, only V enhanced the activity of Pt/MCM-41 in a large temperature range when incorporated into MCM-41.

Metal is generally incorporated into both the inside and surface of the pore wall of MCM-41 during the hydrothermal synthesis of MCM-41. The incorporation into the pore wall surface is attained through bonding with a surface hydroxyl group of MCM-41. The enhanced activity of Pt/V-MCM-41 was thought to be due to this pore wall surface-incorporated V species or others present on the pore wall surface of MCM-41 as in Pt/V/ MCM-41, because Pt/V/MCM-41 had higher activity than Pt/V-MCM-41.

Presented in Figure 3 are the conversions of NO into N_2 (C_{N2}) on the Pt/V/MCM-41, Pt/MCM-41 and Pt/silica catalysts. The C_{N2} curves for Pt/MCM-41 and Pt/silica showed two peaks, meaning that at least two different reaction routes and/or active sites of the catalysts were involved. We can see that in the C_{N2} curve of Pt/V/MCM-41 the first peak (a low temperature peak) was shrunken; conversely, the height and the width at half–height of the second peak were markedly increased compared to those for Pt/MCM-41 and Pt/silica. By virtue of this enlarged C_{N2} peak, the selectivity toward N_2 on Pt/V/MCM-41 became higher than

V/MCM-41 (\bullet), Pt/MCM-41 (\blacksquare) and Pt/ silica (∇).

on Pt/MCM-41 and Pt/silica at temperatures above 300 °C. C3H6 used as a reductant was consumed completely by the reaction at the corresponding first peak position for each catalyst. Hence, C₃H₆ was not present above 270 °C on Pt/V/MCM-41. It is noticeable that the C_{N2} is higher in this condition than in the presence of unconverted C₃H₆. A peculiar reactional feature observed on Pt/V/MCM-41, absent on other catalysts, was that the NO concentration read by a NO_X analyzer oscillated considerably during the reaction at isothermal condition above 300 °C. The oscillation of NO concentration was much severer with increasing temperature, and then damped after showing a maximum around 400 °C. This phenomenon might be caused by a structural change or reduction-oxidation cycle of the catalyst, or a periodic variation of the amount of activator or deactivator such as cokes.¹⁰ We are conducting further study to elucidate the oscillation characteristic and the reaction mechanism for the reduction of NO on Pt/V/MCM-41.

References

- A. Obuchi, A. Ohi, M. Nakamura, A. Ogata, K. Mizuno, and H. Ohuchi, *Appl. Catal. B*, 2, 71 (1993).
- 2 R. Burch and P. J. Millington, Catal. Today, 26, 185 (1995).
- 3 E. Seker and E. Gulari, J. Catal., 194, 4 (2000).
- 4 G. Grubert, J. Rathouský, G. Schulz-Ekloff, M. Wark, and A. Zukal, *Microporous Mesoporous Mater.*, **22**, 225 (1998).
- 5 J. Xu, Z. Luan, T. Wasowicz, and L. Kevan, *Microporous Mesoporous Mater.*, **22**, 179 (1998).
- 6 H. Kosslick, G. Walther, W. Storek, A. Martin, and R. Fricke, *Microporous Mater.*, 9, 13 (1997).
- 7 R. Burch and T. C. Watling, *Catal. Lett.*, **43**, 19 (1997).
- 8 P. Ciambelli, M. E. Fortuna, D. Sannino, and A. Baldacci, *Catal. Today*, 29, 161 (1996).
- 9 W. Schießer, H. Vinek, and A. Jentys, *Catal. Lett.*, **56**, 89 (1998).
- 10 Y. J. Mergler and B. E. Nieuwenhuys, J. Catal., 161, 292 (1996).